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Mind-body interventions offer promising avenues for improving physical and mental health, yet the
comprehensive biological effects of increasingly popular mind-body retreat interventions remain
poorly understood. The neural and molecular effects of a 7-day retreat intervention combining
meditation, reconceptualization, and open-label placebo healing rituals are investigated in an
observational study on 20 healthy human participants randomly selected from 561 retreat
participants. BOLD fMRI functional connectivity during rest and meditation and whole plasma
proteomics, metabolomics, exosome-specific miRNA transcriptomics, and neurite growth and real-
time metabolism cellular assays are compared pre- and post-intervention. Meditation decreases
functional integration in the default mode (p = 0.00009) and salience networks (p = 0.000003) and
decreases whole-brain modularity (p = 0.001). Compared to pre-intervention plasma, post plasma
increases in vitro neurite outgrowth (p = 0.01), enhances glycolytic metabolism (p = 0.008), induces
upregulation of BDNF (p = 0.001), inflammatory (p = 0.0001), anti-inflammatory (p = 0.03), and
endogenous opioid (p = 0.03) pathways, and modulates tryptophan metabolism (pFDR = 0.03) and
neurotransmission-associated exosome miRNA transcripts. This intensive non-pharmacological
mind-body intervention produces broad short-term neural and plasma-based molecular changes
associated with enhanced neuroplasticity, metabolic reprogramming, and modulation of functional
cell signaling pathways, highlighting the potential ofmind-body techniques tomodulate neural circuits
and pathways important to health and well-being.

Mind-body interventions–structured practices that harness the interaction
between psychological processes and physiological systems–can sig-
nificantly improve human physical and mental health, yet the neural and
molecular effects of increasingly popular mind-body retreat interventions
remain poorly understood. In a recent RCT, reconceptualizing pain as the
product of plastic brain activity rather than of peripheral tissue injury

reduced pain three times more than placebo and six times more than usual
treatment1. Placebo effects, another mind-body intervention based on
healing-centered rituals, symbols, and behaviors, affect every major organ
system2,3 and sometimes surpass routine surgical outcomes4–6. Interestingly,
open-label placebos (administered without concealment such that the
subject is aware of the placebo) conserve their effectiveness against many
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conditions7–9, demonstrating that placebo responses do not require decep-
tion, expectations, or conditioning. Meditation, yet another intervention
based on self-regulated attentional practices, can produce subjective
mystical-type experiences10, mental health improvements11,12, and can alter
neural13–15, immune16, autonomic17,18 gene expression19–21, proteomic22–24,
and metabolomic25,26 activity.

Eachof these interventionsoperates throughpartially distinct cognitive
mechanisms, raising the possibility that theymay complement one another
to impact the brain and body synergistically. Reconceptualization operates
through conscious, discursive, and volitional alteration of core beliefs, while
meditation involves a willful yet non-discursive alteration of consciousness,
and open-label placebo involves conscious awareness but operates uncon-
sciously. While research on each technique exists, their combined neural
and molecular effect has never been studied. To do so, we conducted an
exploratory observational study with functional magnetic resonance ima-
ging (fMRI) and blood plasma-based high-throughput proteomics, meta-
bolomics, exosome-specific miRNA transcriptomics; and neurite growth
and real-time metabolism cellular assays (Fig. 1A) on 20 healthy adult
participants (14 females, age = 46.35 ± 10.06 (SD) years) (Fig. 1B) sampled
before and after a 7-day mind-body retreat (Fig. 1C). While logistical lim-
itations prevented us from including age and gender-matched controls to
isolate and mechanistically describe the neural and physiological pathways
engaged by each separate mind-body technique–an equally important but
separate task–, our study provides evidence for the breadth and depth of
physiological effects following aholistic,multifaceted experience commonly
described by participants as personally transformational.

The 7-day retreat combined lectures, meditation, and healing rituals.
Daily lectures (25 total hours) emphasized the body’s self-healing abilities,
the mind’s capacity to shape lived reality, and the healing power of present-
centeredness andmystical-type experiences.Allmeditations (33 total hours)
were guided, delivered with atmospheric music, and taught Kundalini
techniques, which combine conscious meta-awareness and conscious
breathing exerciseswith slow, ascending, focused interoceptive attention on
purported energetic centers along the midline (e.g., brow, throat, heart)
which, according to practitioners, can reprocess embodied trauma and
catalyze adaptive mental and physical changes27,28. Guidance also empha-
sized sustaining a heart-centered state devoid of thinking or judgment and
focusing awareness on a void beyond one’s normal sense of space and time
—a common theme in some contemplative practices29. Guided healing
rituals (5 total hours) brought 6–8 “healers” around one “healee” in which
the former were instructed to practice loving-kindness compassion medi-
tation while focusing attention on their heart, hands, and on the latter’s
body. A healing mechanism was not presented, but the possibility that
healing could occur on either party because of the ritual was mentioned,
similarly to how open-label placebos are presented in trials30. All study
subjects participated as healers. Of the 20 participants, 11 were “advanced”
meditators who had practiced the techniques taught for at least six months,
while 9 were “novices” who had not. No pharmacological substances,
including any psychedelics, were involved in the retreat.

We characterized the resting and meditation states experienced by
participants pre- and post-intervention. Consistent with previous medita-
tion studies31,32, we observed higher meditation-associated whole-brain
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functional integration and reduced intra-network connectivity in thedefault
mode and salience networks. Comparing pre- to post-intervention whole
plasma, we report evidence of enhanced neuroplasticity and glycolytic
metabolism, as well as activation of endogenous opioid and neuromodu-
latory pathways.

Results
Functional brain activity
To characterize the neural signature of the meditative state, participants
underwent structural and blood-oxygenation-level-dependent (BOLD)
functionalMRI scans during rest (5 min) andmeditation (15min).Mystical
experience questionnaire (MEQ) scores reflective of the scannermeditation
increased significantly following the intervention (n = 20; pre = 2.37 ± 1.26
(SD); post = 3.02 ± 1.44) (Wilcoxon signed rank test W = 35.0, p = 0.03),
indicating a deepening of the meditative state between sessions. One par-
ticipant’s data was excluded from further analysis due to corrupt T1w data.
Participantsmovedmore duringmeditation than rest, a potential confound
revealed by the significant effect of task (meditation, rest) on mean

framewise displacement on a two-way (task × time) repeated measures
ANOVA (n = 19, F(1,18) = 25.1, p = 0.00009, η²p = 0.58) (Supplementary
Tables 1 and 2).

Meditation versus rest
We examined functional connectivity in seven resting state networks
(RSNs) (Fig. 2A, B), eight regions of interest (ROIs) (Fig. 2C) (coordinates in
Supplementary Tables 3 and 4), and two whole-brain networks (Fig. 2D),
comparing meditation with rest (n = 19, pFWE = 0.0018 for 28 network
pairs). All resting state networks had higher intra- than inter-network
connectivity (Supplementary Fig. 1A). Compared to rest, meditation
reduced intra-network connectivity in the salience network pre- and post-
intervention (pre: t =−4.32, p = 0.0004, Cohen’s d =−0.87; post: t =−6.71,
p = 0.000003, Cohen’s d =−1.76), default mode network post-intervention
(DMN) (t =−5.04, p = 0.00009, Cohen’s d =−1.78), and dorsal attention
network (DAN) post-intervention (t =−3.71, p = 0.002, Cohen’s
d =−1.06) (Fig. 2A). Meditation also showed reduced inter-network con-
nectivity post-intervention between the salience and dorsal attention
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networks (t =−4.09, p = 0.0007, Cohen’s d =−1.18) and between the
somatomotor and auditory networks (t =−5.30, p = 0.00005,
Cohen’s d =−1.38).

For individual network-component regions (Fig. 2B andTable 1), both
pre- and post-intervention, meditation reduced connectivity between the
right posterior cerebellum and medial prefrontal cortex (pre: t =−4.44,
p = 0.0003, Cohen’s d =−1.15; post: t =−5.81, p = 0.00002, Cohen’s
d =−1.30) and bilateral connectivity between insular cortices, lateral par-
ietal cortices, and anterior prefrontal cortices (all p ≤ 0.0003; Table 1), net-
work hubs associated with sensory, affective, and cognitive functions that
shape the prediction-driven conscious state33. Interestingly, the only
meditation-driven connectivity increase was post-intervention between the
left insula and posterior cingulate cortex (t = 4.50, p = 0.0003, Cohen’s
d = 1.47), a finding previously reported during absorptive trance states34.
ROIs also revealed lower functional connectivity between keynetworkhubs,
including medial prefrontal cortex (mPFC), precuneus, bilateral insular
cortices, and bilateral angular gyri (Supplementary Table 5), serving as an
internal replication and returning results agreeable with the RSN data-
driven approach.

To observe meditation-induced changes at the whole-brain/cortex
level, we parcellated the brain into 48 cortical regions using the Harvard-
Oxford atlas35–37 and into 264 brain regions using the Power atlas38 and
calculated whole-brain/cortex network measures (Supplementary Table 6).
For the cortical parcellation, a 2 (pre/post) by 2 (rest/meditation) repeated
measures ANOVA (Supplementary Table 7) (n = 19) revealed a significant
effect of meditation on network modularity (F(1,18) = 15, p = 0.001, η²p =
0.45) and global efficiency (F(1,18) = 48, p = 0.000002, η²p = 0.73), and no
significant effect on characteristic path length, with similarly significant
whole-brain results. Post-hoc Wilcoxon signed rank tests confirmed that
meditation decreased modularity (pre: W = 18.0, p = 0.001, Cohen’s

d =−1.07; post:W = 45.0,p = 0.04,Cohen’sd =−0.77) and increasedglobal
efficiency (pre: W = 3.0, p = 0.00002, Cohen’s d = 2.04; post: W = 10.0,
p = 0.0002, Cohen’s d = 1.26) as compared to rest (Fig. 2D). These results
were robust to excluding BOLD runs with mean framewise displacement
> 0.3 mm, indicating they were not due to higher meditation-associated
head motion.

Meditation thus reduced functional connectivity in the default mode
and salience networks and induced a whole-brain functional state less
segregated into distinct modules, that allows for more efficient informa-
tion flow.

Pre versus post
Pre- to post-intervention, functional connectivity during meditation
decreased between executive control and salience networks (t =−2.61,
p = 0.02, Cohen’s d =−0.62) but did not survive correction for multiple
comparisons (pFWE = 0.0018) (Supplementary Fig. 1B). For network com-
ponent regions, connectivity duringmeditation decreased significantly pre-
to-post between the left posterior intra-parietal sulcus and auditory cortex
and between the left posterior intra-parietal sulcus and left lateral parietal
cortex (Table 2). No significant changes were found between a priori ROIs
(Supplementary Table 8).

Neuroanatomical differences
No significant anatomical changes were observed pre-to-post intervention,
but advanced practitioners showed greater gray matter volume in the right
superior parietal lobule at baseline (n = 19, p = 0.049) (Fig. 2E), a region
linked to spatial awareness and body representation, which has been
reported to have greater cortical thickness in experienced Zen meditators39.
This difference warrants further investigation with larger samples and
comparisons with age-matched non-meditator controls.

Table 1 | Statistically significant (pFWE < 0.05) rest-vs-meditation differences on resting state network regions (n = 19
participants)

Session RSN component region pair RSN(s) t p Cohen’s d

Pre R post. Cerebellum Medial PFC DMN −4.44 0.0003 −1.15

Post R post. Cerebellum Medial PFC DMN −5.81 0.00002 −1.30

Post L post. Cerebellum Medial PFC DMN −6.30 0.000006 −1.87

Post L post. Cerebellum L inferior temporal DMN −4.56 0.0002 −1.13

Post R anterior PFC L anterior PFC SN −7.41 0.0000007 −1.38

Post L insula L posterior IPS SN −4.32 0.0004 −1.01

Post L insula L anterior PFC SN −5.30 0.00005 −1.57

Post R insula L insula SN −5.58 0.00003 −1.44

Post L lateral parietal L anterior PFC SN −4.62 0.0004 −0.88

Post L lateral parietal L insula SN −7.30 0.0000009 −1.30

Post L lateral parietal R insula SN −6.01 0.00001 −1.02

Post R lateral parietal L lateral parietal SN −4.41 0.0003 −1.18

Post L insula PCC SN-DMN 4.50 0.0003 1.47

Post R insula L frontal eye field SN-DAN −4.24 0.0005 −0.89

Post L lateral parietal L posterior IPS SN-DAN −4.66 0.0002 −1.15

Post L A1 R insula AN-SN −4.68 0.0002 −1.47

Post L A1 L motor cortex AN-SMN −4.67 0.0002 −1.19

Post L A1 SMA AN-SMN −4.55 0.0002 −1.22

Table 2 | Significant (pFDR < 0.05) pre-to-post differences on RSN component regions (n = 19 participants)

Task RSN Component Region Pair RSN(s) t p Cohen’s d

meditation L posterior IPS L A1 DAN-AN −4.72 0.0002 −1.01

meditation L posterior IPS L lateral parietal DAN-SN −4.44 0.0003 −0.80
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Whole plasma
Having characterized the neural state induced bymeditation, we turned our
attention to the broadermetabolic andmolecular changes in whole plasma.

Enhanced neuroplasticity
Participants’ anecdotal reports consistently emphasize radical psychological
breakthroughs, and previous meditation studies have reported increased
BDNF (brain-derived neurotrophic factor) levels22 consistent with
enhanced neuroplasticity. To investigate whether the intervention affected
circulating plasma factors conducive to neuroplasticity, we treated cultured
glutamatergic PC12 neuroendocrine cells with NGF (nerve growth factor)
and 1% pre- and post-intervention plasma and quantified neurite out-
growth length. Starting on day 4 post-NGF treatment, post-plasma-treated
cells exhibited significantly longer neurites than pre-plasma-treated cells
(t =−2.52, p = 0.01, Cohen’s d = 0.59) and continued to do so until the end
of the experiment (Fig. 3A, B).

To investigate proteomic factors driving this effect, we quantitatively
measured 7596 protein targets using the high-throughput SomaScan assay
and constructed a BDNF pathway 26-protein pre-to-post foldchange index
(Fig. 3C, D), which was significantly upregulated (1-sample t-test: t = 3.21,
p = 0.001, Cohen’s d = 0.12). While BDNF itself was not significantly
affected, SLITRK1 (SLIT and NTRK-like family member 1), a protein that
promotes excitatory synapse development and glutamatergic neurite
outgrowth40,41, increased significantly pre-to-post (W = 39.0, p = 0.01,
CLES = 0.35). NGFR (nerve growth factor receptor), a TNF receptor that
binds to NGF and BDNF and plays an essential role in neural cell differ-
entiation and survival, also increased (W = 58.0, p = 0.08, CLES = 0.35).

Metabolic reprogramming
Previous studies have characterized meditation as a hypometabolic state42

and reported enhanced glycolysis in Tibetan Buddhist monks24. To test the
intervention’s effect on real-timemetabolism, we treated BE(2)M17 human
neuroblastoma cells with 1% plasma from all participants for 60min and
performed Seahorse XF assays. An ATP Rate assay (Fig. 4A) revealed that

changes in plasma produced during the intervention induced a compen-
satory shift from mitochondrial to glycolytic ATP production, with post-
plasma-treated cells showing significantly higher basal glycolytic rate than
pre-plasma-treated cells (t = 2.95, p = 0.008, Cohen’s d = 0.36) despite no
significant differences in mitochondrial (t =−1.04, p = 0.31, Cohen’s
d =−0.28) or total ATP production rate (t = 1.46, p = 0.16, Cohen’s
d = 0.25). A glycolytic rate assay (Fig. 4B) confirmed that, compared to pre-
plasma, post-plasma increased basal glycolytic rate (t = 3.39, p = 0.003,
Cohen’s d = 0.63) and lowered basal respiration rate (t =−4.80, p = 0.0001,
Cohen’s d =−1.26). Mitochondrial stress parameters (Fig. 4C) did not
significantly differ between cells exposed to pre- and post-plasma, while,
compared to cells exposed to growth medium only, plasma-exposed cells
displayed significantly higher ATP production and glycolytic rates.

As before, to see if the plasma proteome reflected these changes, we
pre-selected 19 proteins involved in glycolysis and oxidative phosphoryla-
tion and calculated pre-to-post foldchanges and an index average
(Fig. 4D–G). The glycolysis index increased significantly pre-to-post
(t = 3.37, p = 0.0008, Cohen’s d = 0.23), with 12 upregulated targets led by
ENO2 (enolase 2, a neuron-specific converter of 2-phosphoglycerate into
phosphoenolpyruvate) (W = 48.0, p = 0.03, CLES = 0.33) and LDHA (lac-
tate dehydrogenase A, converter of pyruvate into lactate in anaerobic gly-
colysis (W = 38.0, p = 0.01, CLES = 0.22). Oxidative phosphorylation
associated proteins trended upwards (t = 1.38, p = 0.17, Cohen’s d = 0.13)
but did not reach statistical significance.

Functional cellular signaling
Having investigated specific pathways of interest, we performed an
exploratory, hypothesis-free analysis of proteomic andmetabolomic results.

Proteomics
Volcano plot analysis (Fig. 5A) revealed 21 significantly altered proteins.
Cofilin-2 (COF2) and Enoyl-CoA hydratase were significantly upregulated,
which suggests enhancedcellular processes related to cytoskeletal regulation
and fatty acid metabolism. IL1-F6 (interleukin-36 alpha), MYPC1 (myosin
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binding protein C1), LDHA, and FGF-19 (fibroblast growth factor 19)
exhibited moderate upregulation.

Protein-protein interaction networks (Fig. 5B) revealed three sig-
nificantly altered protein clusters related to mitochondrial energy produc-
tion (ATP5F1, ATP6V1F); fatty acid metabolism (ECHS1, POP7, and
ACAT2); nucleosome organization (HDAC1, RANGAP1, RBL2, C3,
and MYOM2).

Pathway enrichment analysis (Fig. 5C) showed upregulated proteins
associatedwithmuscle cell apoptosis, amyloidprecursorprotein catabolism,
and mitochondrial proton transport pathways (padjusted < 0.05), suggesting
alterations in metabolic pathways and muscle-related cellular processes.
Interestingly, pathways related to butanoate, propanoate metabolism, and
tryptophan biosynthesis were enriched, suggesting shifts in key metabolic
routes. (See Supplementary Figs. 3 and 4 for g:Profiler enrichment and
pathway heatmaps.)

We also created proteomic indices to examine inflammation,
epigenetic regulation, and short-chain fatty acid (SCFA) metabolism
pathways, comparing across timepoint (pre/post) and experience
level (novice/advanced) (Fig. 5E) (Supplementary Fig. 5). The epi-
genetic (HDAC) index demonstrated elevated sirtuins and HDAC
expression in the advanced group, reflecting increased epigenetic
regulation and possible stress resilience. In contrast, the novice group
showed differences in mitochondrial function and chromatin remo-
deling. SCFA index showed increased expression of acyl-CoA dehy-
drogenase short-chain (ACADS) and fatty acid synthase (FASN) in
the advanced group, suggesting a shift toward enhanced fatty acid
oxidation and improved metabolic efficiency.

Inflammation, anti-inflammation, and cellular turnover
To assess whether the intervention elicited inflammatory or anti-
inflammatory cascades, we examined a panel of 23 inflammatory and 21
anti-inflammatory proteins (Fig. 5E). We found significant upregulation of
inflammatory markers (t = 3.81, p = 0.0001, Cohen’s d = 0.15), driven by
increases in S100A8 (calgranulin A) (W = 30.0, p = 0.004, CLES = 0.33) and
CCL2 (C-C motif chemokine 2) (W = 47.0, p = 0.03, CLES = 0.33) and
trending increases in IL-6, S100A9 (S100 calcium-binding protein A9;
calgranulin B), and PTGS2 (prostaglandin G/COX-2). These findings align
with the role of S100A8 and S100A9 as alarmins—endogenous molecules
released in response to cellular damage or stress known to induce secretion
of inflammatory mediators IL-6, IL-8, and CCL243,44.

Interestingly, we also observed a significantly upregulated anti-
inflammatory markers index (t = 2.25, p = 0.03, Cohen’s d = 0.09), with
positively trending levels of TGF-b1 (transforming growth factor beta-1),
NFKBIA (NF-kappa-B inhibitor), STAT6 (signal transducer and acti-
vator of transcription 6), CEBPB (CCAAT/enhancer-binding protein
beta), IL1, SOCS3 (suppressor of cytokine signaling 3), and TNFAIP3
(TNF alpha-induced protein 3). Concurrent activation of both pathways
suggests a dynamic process of immune modulation, possibly reflecting
enhanced cellular turnover or repair mechanisms. We also measured
plasma nanoparticles and found no significant change in total nano-
particle concentration (t =−0.17, p = 0.87, Cohen’s d =−0.03), but did
find a significant decrease in the percentage of particles in the exosome
range (20–120 nm diameter) (t =−2.09, p = 0.04, Cohen’s d =−0.65)
(Supplementary Fig. 2A, B) consistent with both higher cellular turnover
and metabolic suppression.
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Endogenous opioids
Placebo effects are known to engage endogenous opioid and endocrine
systems. We assessed levels of 15 proteomic targets within the endogenous
opioid pathway and found the pathway index to be significantly upregulated
(t = 2.14, p = 0.03, Cohen’s d = 0.12), driven by positively trending increases
in opioid peptide precursor PENK (proenkephalin-A), opioid peptide
PDYN (dynorphin A), GABR2:CD (GABBA B receptor subunit 2: cyto-
plasmic domain), and CAMK2B (calcium/calmodulin-dependent protein
kinase type II), which is known to increase after opioid administration
(Fig. 5E). ELISA assays to confirm these findings (Fig. 5F and Supplemen-
tary Table 11) revealed significant increases of beta-endorphin (W = 14.0,
p = 0.0002, Cohen’s d = 0.42) and dynorphin (W = 37.0, p = 0.009,
Cohen’s d = 0.27).

Metabolomics
We performed liquid chromatography-mass spectrometry-based meta-
bolomic analysis on plasma. Partial least squares discriminant analysis

(PLS-DA) (Fig. 6A) revealed distinct metabolic profiles between time
points, with key metabolites involved in synaptic plasticity, metabolism,
RNA modulation, neurotransmitter availability, and inflammation and
over 25 metabolites with VIP (variable importance in projection) scores
> 2 (Fig. 6B, C).

MetaboAnalyst pathway enrichment detected 53 impacted pathways
(Fig. 6D and Supplementary Table 16). Six showed significant pre-to-post
changes (p < 0.05), led by tryptophanmetabolism (pFDR = 0.03) (Fig. 6E and
Supplementary Fig. 6), with decreases in upstream and downstream
metabolites, including L-tryptophan (p = 0.03), tryptamine (p = 0.04),
L-kynurenine (p = 0.04), indole-3-acetate (p = 0.001), and
5-methoxyindoleacetate (p = 0.001). The steroid hormone biosynthesis
pathway showed lower androstenediol (p = 0.04), testosterone (p = 0.19),
cortisol (p = 0.06), cortisone (p = 0.07), 21-deoxycortisol (p = 0.77), corti-
costerone (p = 0.07), and 11-dehydrocorticosterone (p = 0.02). Lower cor-
tisol levels reported in previousmeditation studies were interpreted as signs
of improved stress response regulation45.
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Among top-ranking metabolites, three were related to phenylalanine
metabolism, including CAN-2-Hydroxy-3-phenylpropionic acid, N-acetyl-
D-phenylalanine, and phenethylamine, which can act as neurotransmitter
storage, contribute to stress adaptation, and enhance dopamine, nor-
epinephrine, and serotonin release. Two RNA-related metabolites,
1-methyladenosine and N6-methyladenosine, were linked to inflammatory
responses, with roles in RNA metabolism, methylation, and cellular sig-
naling. 3-indolebutyric acid, associated with tryptophan metabolism, may
influence neurotransmitter synthesis and synaptic plasticity. Several
dipeptides were identified as enhancers of gut microbial activity, promoting
SCFAproduction,which is crucial for regulating inflammationand immune
function. S1P (d18:1), a signaling lipid, may reflect gut barrier integrity and
inflammatory pathway alterations. Figure 6F shows a distinct clustering of
metabolites by relative abundance, highlighting these key contributors.

Exosome-specific transcriptomics
We analyzed differentially expressed exosome-specific extracellular
microRNAs, non-coding RNAs, and RNAs mapping to protein-coding
mRNAs. Data from 6 participants was excluded at preprocessing (n = 16).
At least 18 non-coding exRNAs (p < 0.1, log2FC > ±0.58) exhibited distinct
expression profiles on pre and post timepoints (Fig. 7A, B). Principal
components (PC) explain 46.3% of the total timepoint variation (Fig. 7C),

indicating significant shifts in non-coding exRNA expression during the
intervention. At least 5.99% of the variance was attributed to experience
levels, with partial separation between novice and advanced meditators
(Fig. 7D). Correlations between principal components and key variables
such as timepoint and experience reveal thatPC1andPC2strongly correlate
with timepoint (R² = 0.35 and 0.28, respectively), while PC9 moderately
correlateswith experience (R² = 0.31), indicating that both influence exRNA
expression (Fig. 7E).

We also identified exRNAs mapped to at least 66 annotated protein-
codingmRNAs upregulated or downregulated post-intervention (Fig. 7F, G).
Some of the upregulated exRNAs could be mapped to ras/rab interactor 1
(RIBC1), synapsin 3 (SYN3), and glutamate ionotropic receptor kainite type
subunit 3 (GRIK3), genes linked to synaptic function and neurotransmission.
The enrichment of exRNAs specific to solute carrier family 27 member 1
(SLC27A1) and proprotein convertase subtilisin/kexin type 9 (PCSK9) could
enhance neural signaling and metabolic regulation. Downstream functional
analysis of exRNAs in pre-vs-post exosome fractions against the Reactome
database46 (Fig. 7H) predicted pathways related to neurotransmission (Ser-
otonin/Dopamine Neurotransmitter Release Cycle), further highlighting the
enhancement of synaptic activity post-intervention. Metabolic pathways,
including Transport of Vitamins and Nucleosides, could reflect broader
metabolic changes.
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Machine learning and feature-MEQ correlation
To identify features differentiating timepoints and experience levels
across metabolomic, proteomic, fMRI, and RNA outcomes, we eval-
uated the data using Random Forest and XGBoost models. After nor-
malization and dimensionality reduction, performance was assessed
with tenfold cross-validation using F1 score, precision, recall, and area
under the receiver operating characteristic (AUROC). Both models
demonstrated robust classification across conditions, with AUC values
ranging from 0.70 to 0.93. SHAP analyses revealed key contributors
spanning metabolites, fMRI connectivity features, proteins, and non-
coding RNAs (Fig. 8A, B).

Focusing first on timepoint classification, bothmodels achieved strong
discrimination between pre- and post-meditation states (XGBoost AUC=
0.86; Random Forest AUC = 0.90). Top XGBoost predictors included Gly-
Gly-Phe, 3-indolebutyric acid, Gly-Lys, and connectivity between the
anterior and salience networks, default mode–salience, and precuneus
regions. Random Forest highlighted overlapping features alongside addi-
tional metabolites such as Androstenediol, S1P(d18:1), N6-methyladeno-
sine, and purine derivatives. Many of these metabolites are linked to amino
acid metabolism, neurotransmitter balance, and cellular stress signaling,
while sphingolipids such as Androstenediol and S1P(d18:1) implicate lipid
signaling and neuroendocrine function. Connectivity differences involving
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salience, executive and default mode networks (SN, ECN, DMN, PC) align
with prior literature that mediation can reorganize large-scale brain net-
works that govern salience47, attention48, interoception49, and self-referential
processing47. Taken in concert, timepoint differences identify shifts that
integrate across neurofunctional and metabolic layers, reinforcing the
concept that mediation acts as a systemic regulator of mind-body
physiology.

To evaluate the influence of meditation experience, post–pre deltas
were compared between novice and advanced practitioners. XGBoost
achieved modest classification performance (AUC= 0.70), while Random
Forest reached higher discrimination (AUC= 0.93). SHAP analysis indi-
cated that immune- and stress-related proteins, including fibroblast growth
factor 19, interferon-γ, C-C motif chemokine ligand 5, and Toll-like
receptor 2, were major contributors in XGBoost, whereas Random Forest
emphasized metabolic and mitochondrial features such as myocyte
enhancer factors, lactate dehydrogenase A, ATP synthase ATP5PB, and

Sirtuin 2. Across bothmodels, large-scale connectivity differences involving
salience, executive, and default mode networks (e.g., AN–SN, VN–DMN,
SN–DAN) emerged as consistent drivers of classification. These findings
indicate that long-term meditation experience is associated with distinct
molecular and network-level adaptations that support resilience and energy
regulation.

Finally, to explore links between biological features and subjective
outcomes, we correlated model-identified predictors with Mystical
Experience Questionnaire (MEQ) scores. Several metabolites and con-
nectivity measures showed nominal associations (p < 0.05), with a subset
surviving FDR correction (asterisks, Fig. 8C). In the timepoint analysis,
baseline 3-indolebutyric acid correlated positively with MEQ (r = 0.72,
q < 0.05), whereas N6-methyladenosine correlated negatively (r =−0.67,
q < 0.05). At the experience level, immune markers including FGF19 and
interferon-γ were negatively associated with MEQ deltas (r =−0.59 to
−0.73, q < 0.05), and reductions in network connectivity (DAN–DMN,
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Fig. 8 | Machine learning and MEQ-features correlations (n= 20 participants).
A ROC curves and SHAP plots for XGBoost and Random Forest models predicting
pre/post classification: AUC = 0.86 (XGBoost) and 0.90 (Random Forest) indicate
good classification performance. SHAP plots display the top contributing features
ranked by impact onmodel output.BROC curves and SHAP plots for XGBoost and
Random Forest models predicting novice/advanced classification: AUC = 0.70
(XGBoost) and 0.93 (Random Forest). Abbreviations: R (right), L (left), AN
(auditory network), SN (salience network), DMN (default mode network), SMN

(somatomotor network), ECN (executive control network), VN (visual network),
DAN (dorsal attention network), dlPFC (dorsolateral prefrontal cortex), AI (ante-
rior insula), AG (angular gyrus), GAPDH (glyceraldehyde-3-phosphate dehy-
drogenase), ATP5PB (ATP synthase peripheral stalk membrane subunit B), FGF
(fibroblast growth factor), NTRK2 (neurotrophin receptor tyrosine kinase 2).
C Heatmaps of Spearman R correlations between Mystical Experience Ques-
tionnaire (MEQ) scores and the top machine learning features per model and time
point, with * denoting FDR-adjusted statistical significance (pFDR < 0.05).
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LAI–LAG) were inversely correlated with MEQ outcomes in experienced
meditators (r = –0.64 to −0.68, q < 0.05). Together, these exploratory
findings suggest that both peripheral metabolic and immune markers and
central network dynamics are tied to reported mystical experience levels
during meditation.

Discussion
Our study shows how an intensive non-pharmacological mind-body
intervention produced broad short-term neural and plasma-based mole-
cular changes associated with enhanced neuroplasticity, metabolic repro-
gramming, and modulation of functional cell signaling pathways.

fMRI data showed that this meditation style functionally disrupts the
defaultmode and salience networks (responsible for self-referential thought
and allostatic regulation32,50) and cerebellum-prefrontal predictive proces-
sing circuits involved in integrating internal models with external sensory
data51. This complements studies showing meditation-induced changes in
DMN connectivity32,52. Mindfulness meditation has been linked to DMN
deactivation32,53 and stronger connectivity between DMN-Salience and
DMN-Executive Control networks47, likely reflecting an increased capacity
to switch in/out of default mode dominance. Here, the main effect we
observed was a meditation-driven decrease in intra-network DMN con-
nectivity and a broad desynchronization of whole-brain connectivity.
Meditation also reduced prefrontal-cerebellar connectivity both pre- and
post-intervention, suggesting a state-dependent suppression of self-
referential and evaluative processing consistent with focused interoceptive
awareness, non-judgmental awareness, and a state that transcends the self—
all features of the guided meditations. DMN-cerebellar connectivity
alterations have been reported for depressive disorder and during previous
meditation studies, albeitwithopposite (higher connectivity) effects54,55.Our
machine learning analyses further reinforced these findings by demon-
strating that meditation-related shifts in fMRI connectivity were embedded
within broader molecular changes across metabolomic, proteomic, and
transcriptomic layers. The convergence of neural and peripheral predictors,
including amino acid metabolites, lipid signaling molecules, immune reg-
ulators, and network-level connectivity, underscores that meditation
engages a systemic mind-body axis rather than isolated pathways.

We can interpret these findings with a Bayesian brain framework,
which posits that the brain probabilistically predicts incoming sensory
information basedonprior beliefs to allostatically regulate the body’s energy

needs, with experience and behavior largely shaped by the system’s priors
and predictive architecture56. Predictive brain regions project efferent copies
to the subcortical nuclei that regulate metabolic, endocrine, immune, and
other physiological setpoints33,57 based on current and predicted energy
needs. Thus, physiological and psychological health can be targeted by
shifting the priors and functioning of the predictive system.

Eachmind-body technique in the studymay be thought of as acting on
a different part of the predictive architecture (Fig. 9): Reconceptualization
changes how participants believe their minds construct reality and affect
their bodies, which is equivalent to reconfiguring the priors (beliefs about
the causes of symptoms or sense data) and hyperpriors (beliefs about beliefs
about the causes of sense data) that structure how interoceptive and
exteroceptive sensory signals are interpreted and experienced. The open-
label placebo-like healing ritual enacts a known health-promoting behavior
(healing) that does not conform to rational norms, creating a mismatch
between motor/affective behavior and the experience-driven self-fulfilling
prediction of sense data, which opens the system to new predictive (sensory
and allostatic) paths30. Finally, meditation, by focusing attention on the
present, weakens the predictive processes themselves to produce a state of
pure awareness that is free from thepredicted self 50 inwhichpriors aremore
easily replaced with present-centered sense data. The three techniques may
therefore work synergistically to facilitate a more flexible and adaptive
prediction system, accounting for the personal transformations anecdotally
reported by participants and the downstream neuroplastic and molecular
changes. Theobservedchanges inbloodbiomarkersmayhave resulted from
the endocrine, immune, and other regulatory changes evoked by the
intervention’s effects on these predictive allostatic mechanisms, as well as
frommeditation-induced effects on both sympathetic and parasympathetic
branches of the autonomic nervous system22, a finding common to other
meditation studies58, which may also account for the concomitant upre-
gulation of inflammatory and anti-inflammatory proteins during the
intervention.

MEQ-30 scores revealed that participants experienced mystical-type
experiences during meditation, reflected in neural activity by strengthened
connectivity between the left insula and the PCC—a hallmark sign of trance
states—and diminished DMN connectivity and whole-brain modularity—
consistent with previous meditation studies32,59. Elevated post-intervention
plasma levels of SLITRK1 and NGFR and the inducement of greater glu-
tamatergic dendritic growth by post-intervention plasma are both similar to

healing ritual sensory input physiology
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Fig. 9 | Potential cortical implementation. Hierarchical predictive coding scheme
showing how the three mind-body techniques may synergistically facilitate a more
flexible and adaptive predictive system: Reconceptualization remodels priors and
hyper-priors; the healing ritual, acting as an open-label placebo, opens the system to

new predictive avenues; andmeditation weakens descending predictions to facilitate
their replacement with new beliefs and present-centered sense data and activates
sympathetic and parasympathetic autonomic responses. New predictions alter
allostatic setpoints and autonomic regulation.
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effects by serotoninergic entheogens, which some have compared to med-
itative states60,61, and consistent with neuroplastic changes mediated by the
BDNF pathway. While follow-up mechanistic studies are needed to estab-
lish causality, we provide converging evidence at multiple scales to suggest
that the mind-body intervention produced neuroplastic changes mediated
by these BDNF-associated proteins.

Beyond neural changes, we found that post-intervention plasma
enhanced glycolysis in treated cells and containedhigher levels of glycolysis-
associated proteins ENO2 and LDHA. While the in vitro results may be
interpreted as aWarburg effect on neuroblastoma cells, our proteomic data
suggests that glycolysis became enhanced in participants. Notably, a similar
phenomenon was observed in experienced Tibetan monks24, for whom the
enhanced glycolytic phenotype was associated with a cardioprotective
plasma proteome, improved oxygen release, and decreased atherosclerosis.
This underscores the complex interplay between neural and non-neural
mechanisms in mind-body interventions and warrants further investiga-
tion. Since the brain’s predictive architecture is evolutionarily geared
towards regulating metabolic outlays, we speculate that the present-cen-
tered, sensory-driven brain state induced by meditation requires a more
dynamic energetic profile made possible by glycolysis’ fast response times.

The significant pre-to-post intervention increases in beta-endorphin
and dynorphin point to the engagement of the endogenous opioid system
without deception. We suggest that reconceptualization altered high-level
priors about the mind’s ability to influence the body, leading to new pre-
dictions thatmodulated endorphin levels. Since reconceptualization creates
a steady belief state, this effect is likely sustained for longer than deception-
based placebos. In a world in which up to 50% of American physicians
regularly and knowingly prescribe placebomedications62, interventions that
activate a self-mediated, conscious, and non-deceptive pain relief
mechanism carry great potential, especially for pain conditions without a
well-described physical etiology. Future research should investigate which
specific beliefs associated with health, disease, mind, and body sustainably
optimize endogenous opioid modulation, as well as if and how meditation
aids in initiating and sustaining these changes.

Our transcriptomic analyses reveal significant changes in circulating
exRNAs implicated in neural activity, metabolic processes, and cellular
signaling. Specifically, key upregulated transcripts such as RIBC1 (RIB43A
domain with coiled-coils 1) and MIR455 (microRNA 455) mapped to
pathways involved in neurotransmission and glycolysis. Pathway enrich-
ment analysis highlighted upregulated Reactome pathways related to
synaptic transmission and neurotransmitter cycling, consistent with the
observed neural connectivity and neuroplasticity changes. Together, these
results provide multi-level evidence that the mind-body intervention
induced metabolic reprogramming, neuroplastic changes, and endogenous
opioid modulation, potentially mediated by dynamic exRNA activity and
glycolytic adaptation.

Interestingly, simultaneous activation of inflammatory and anti-
inflammatory protein pathways is reminiscent of prior findings showing
mind-body techniques can enhance resilience to environmental stressors
via gene expression63. Cytokines like IL-6 are known to have both pro-and
anti-inflammatory roles depending on the context acting as both acute-
phase reactants during stress, but also stimulating IL-1 receptor antagonist
and IL-10 in exercise and repair settings64. While inflammation is often
viewed as a harmful response, increased cellular turnover and tissue
remodeling could occur as part of an adaptive response to these interven-
tions – another area worthy of further investigation.

While our study provides valuable insights into the broad effects of
mind-body interventions, we acknowledge several important limitations.
First, the uncontrolled observational design limits our ability to infer
causality or disentangle the relative contributions of meditation, placebo,
reconceptualization, and other factors such as expectations, diet, and
relaxation or distance from routine stressors. Future studies should imple-
ment more rigorous, controlled designs to test how these elements interact
and whether the non-predictive meditation state facilitates the replacement
of maladaptive priors during reconceptualization. Additionally, the small

sample size and partial reliance on experienced meditators may limit the
generalizability of our findings, and future research should include larger,
more diverse cohorts. Additionalmechanistic studies should investigate the
molecular targets implicated by this study to causally link the neuroplastic
and phenomenological changes to the molecular pathways implicated by
our work.

Specific methodological limitations include the following. Although
data on meditation experience and practice frequency were collected for
retreat-based meditations within the study cohort, equivalent information
regarding other forms of meditation practice—apart from the binary indi-
cation of their presence or absence—was not obtained. Potential circadian
and metabolic confounds were introduced by variable blood collection
times (up to 8-h range onDay 8), pre-collection fasting durations, and time
elapsed after the meditation intervention ended (up to 48 h for blood col-
lections and 24 h for fMRI acquisition) betweenparticipants.Dietary factors
and fasting may also have introduced confounds in proteomic and meta-
bolomic measures since no standardized diet was implemented and fasting
times beyond 30-min pre-blood collection were not controlled during the
intervention.The short duration of the resting state scan can limit our ability
to attribute connectivity-derived features solely to the experimental
variables64,65. The open eyes paradigm during fMRI BOLD acquisition
chosen to reduce the risk of drowsiness likely introduced potential visual
confounds. Finally, denoising with ICA-AROMA+WM/CSF regression is
limited in removing physiological noise in regions with strong cardiac or
respiratory activity, which may have resulted in additional confounds.

Conclusions
This observational study is the first to investigate the joint effects of three
mind-body interventions–meditation, reconceptualization, and open-label
placebo healing rituals–on neural activity and plasma physiology. Our
findings show these techniquesmay act synergistically to producemystical-
type experiences, enhance neuroplasticity, reprogram metabolic pathways,
andmodulate endogenous opioids, highlighting the potential ofmind-body
interventions to effect profound changes in neural activity and physiology.

Methods
Participant recruitment
The study was advertised to all 1444 registered retreat attendees via
email invitation, of which 561 expressed interest by answering an
online questionnaire to determine eligibility (Fig. 1D). Inclusion
criteria included being an English speaker; being at least 21 years of
age; being in good general health; being able to provide blood sam-
ples before, during, and after the retreat; and agreeing to undergo
fMRI neuroimaging before and after the retreat. Exclusion criteria
included inability to consent, inability to follow or comply with study
procedures, current use of psychoactive medications, contra-
indications for phlebotomy, and contraindications for MRI (preg-
nancy, history of seizures, electronic or ferromagnetic medical
implants or devices, claustrophobia). Of 65 eligible participants, 36
were randomly selected to participate and provided written informed
consent. Of 27 who consented, five were dropped due to scheduling
conflicts; one participant was dropped for not complying with MRI
facility masking requirements; and one participant failed MRI
screening due to a heart stent. The study size was determined by the
scanning time available at the fMRI facility (1 MRI scanner for 2 days
pre- and post-intervention). Our study included male (n = 6) and
female (n = 14) participants (gender identity), and similar findings
are reported for both genders. Of the 6 male participants, 2 had been
practicing the meditations carried out in the workshop daily for more
than 1 year, 3 had been practicing the meditations daily for less than
1 year (one of whom practiced a different form of meditation), and 1
participant had not previously practiced the meditations before
attending the retreat, though he had a different meditation practice.
Of the 14 female participants, 8 had been practicing the retreat
meditations for over 1 year (most being a daily practice), and 1 of the
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8 also practiced a different form of meditation. Six of the 8 females
had been practicing the meditations for less than 1 year, with only 3
reporting an almost daily practice, and 4 of the 8 reported having a
different meditation practice. One of the 8 females had not previously
practiced the meditations before attending the retreat, though she
had a different meditation practice. The retreat began at 5 pm on Day
1 and ended at 1:30 pm on Day 7 and was conducted in April 2022 at
the Manchester Grand Hyatt (San Diego, CA, USA). The diet was
provided by the hotel. There were no adverse events.

The study was conducted in accordance with the Declaration of Hel-
sinki principles and all relevant ethical regulations. Experimental protocols
were approved by the Western Institutional Review Board (WIRB; now
WCG-IRB; ProtocolMED02#20211477) and registered on clinicaltrials.gov
(NCT 06615531). Written informed consent was obtained from all parti-
cipants prior to study inclusion, and clinical records are housed at VitaMed
Research (Palm Desert, CA) as mandated by federal laws. All ethical reg-
ulations relevant to human research participants were followed.

Functional magnetic resonance imaging (fMRI)
Acquisition. fMRI was performed off-site at the UCSD Center for Func-
tionalMRI pre-intervention (Day 0: 8 am–8 pm andDay 1: 8 am–4 pm) and
post-intervention (Days 8 and 9: 8 am–6 pm). Participants were positioned
in theMRI scanner (Siemens Prisma 3T with standard 32-channel head coil)
with a respiratory transducer placed around the chest, a pulse oximeter
placed on the left index finger, and MRI-safe headphones. A structural scan,
two functional blood oxygen level dependent (BOLD) scans (resting state
and meditation), and a diffusion tensor imaging (DTI) scan (not described
here) were acquired.

Structural scan. Participants were instructed to “notmove and keep eyes
closed.” High resolution structural images were acquired with a T1-
weighted magnetization-prepared rapid gradient-echo (MPRAGE)
sequence with TR = 2400 ms, TE = 2.22 ms, TI = 1000 ms, flip angle = 8°,
FOV = 224mm, voxel size = 0.7 mm isotropic, 320 slices, slice thickness
0.80 mm, saggital orientation, bandwidth = 210 Hz/Px, and acquisition
time = 7min. 40 s.

Functional scans. During the 5-min BOLD resting state scan, partici-
pants were instructed to “notmove, keep eyes open, stay awake, and think
about whatever you want, but do not meditate.” During the subsequent
15-min BOLD meditation scan, an auditory recording of a guided
meditation from the retreat was played and participants were instructed
to “notmove, listen to the guidedmeditation soundtrack, andmeditate as
suggested by the audio while keeping your eyes open.” An eyes open
paradigm was chosen to reduce the risk of drowsiness or sleep during the
meditation run, which was deemed a potentially greater risk than the
presence of visual confounds to accurately comparing active meditation
with passive rest66,67. One rest and one meditation run were collected per
scan. The audio consisted of continuous expansive atmospheric music
with an intermittent ethereal voice repeatedly instructing listeners to
“tune into nothingness”, “no time”, “nowhere”, and “love”, combining
loving-kindness meditation with focused awareness of the experiencing
self and its potential dissolution into pure awareness. BOLD images were
obtained with a gradient-recalled echo-planar imaging (EPI) sequence
with TR = 800ms, TE = 37 ms, flip angle = 52°, FOV = 208 mm, voxel
size = 2 mm isotropic, 2 mm slice thickness, 72 slices, number of
volumes = 1200, matrix size = 104 × 90, bandwidth = 2290 Hz/Px, and
acquisition time = 5min. (rest) and 15 min. (meditation).

Post-scan questionnaire. Immediately after each scanning session,
participants were asked to assess their experience meditating by com-
pleting the Mystical Experience Questionnaire (MEQ-30)68.

fMRI preprocessing and denoising. Anatomical and functional data
were preprocessed using fMRIPrep v21.0.269. B0-field maps were

estimated with Topup70. Anatomical T1-weighted (T1w) images were
corrected for intensity non-uniformity using ANTS 2.3.371, skull-strip-
ped, segmented using Fast (FSL 6.0.5)72, and normalized to standard
space (MNI152Nlin2009cAsym) with nonlinear registration (ANTs
2.3.3). Brain surfaces were reconstructed using recon-all (FreeSurfer
6.0.1)73. Due to a corrupted T1w image for participant 4023, co-
registration failed, and 4023 was excluded from fMRI analysis.

BOLD head motion parameters were estimated using MCFLIRT
(FSL 6.0.5)74. Functional runs were co-registered to anatomical T1w
references using boundary-based registration (FreeSurfer) and resampled
to standard space. Confounding time-series were calculated for CSF/WM
region-wise global signals, and motion artifacts were identified using
independent component analysis (ICA-AROMA)75. Non-steady state
volumes were removed and spatial smoothing with an isotropic Gaussian
kernel of 6 mm FWHM (full-width half-maximum) was applied.
Denoising using Nilearn 0.9.276 was performed by detrending, standar-
dizing, and bandpass filtering (0.01–0.1 Hz) time series data, and by
regressing ICA-AROMA motion artifacts and mean CSF+WM
signals75. Physiological noise was addressed via ICA-AROMA+CSF/
WM regressions rather than with physiological recordings. Additional
denoising for whole-brain network analyses involved regressing global
signal and excluding BOLD runs with mean FD > 0.3 mm to obtain
functional connectivity distributions mean-centered around zero, which
were confirmed by visual inspection.

Functional connectivity analysis. Functional connectivity analyses
were performed on seven canonical resting state networks (RSNs), eight a
priori defined regions of interest (ROIs), and whole-brain networks
(Nilearn 0.9.2) (Brain Connectivity Toolbox77). To understand how this
meditation style influences large-scale neural dynamics, we examined
functional connectivity and whole-brain network measures, capturing
the integration, segregation, and reorganization of brain networks.

Resting state networks and regions of interest. RSNs examined
included the default mode network (DMN), dorsal attention network
(DAN), executive control network (ECN), salience network (SN), sensor-
imotor network (SMN), visual network (VN), and auditory network (AN).
The Montreal Neurological Institute (MNI) coordinates for the 36 regions
that comprise them were extracted from the Raichle (2011) atlas78 (Sup-
plementary Table 3). Mean denoised BOLD time series were extracted from
10mm-radius (523-voxel) spheres centered on the MNI coordinates.
Between-region Pearson correlations were calculated and z-transformed to
obtain a measure of connectivity strength. Within-network connectivity was
calculated as themean connectivity between each unique pair of ROIs within
a given network, and between-network connectivity was calculated as mean
connectivity between all ROIs from two networks, with each ROI pair
containing one region per network. Eight a priori ROIs were additionally
selected for a hypothesis-driven analysis based on task-induced and con-
nectivity changes in other meditation studies79–82: medial prefrontal cortex
(mPFC), right and left dorsolateral prefrontal cortices (r/l dlPFC), right and
left insular cortices (r/l IC), right and left angular gyri (r/l AG), and central
precuneus, with MNI coordinates extracted from the DiFuMo atlas83 (Sup-
plementary Table 4). Mean denoised BOLD time series per region were
extracted from 10mm-radius (523-voxel) spheres centered on the MNI
coordinates, and between-region Pearson correlations were calculated.

Whole-cortex/brain networks. Networks were constructed from the
25%-thresholded 48-region Harvard-Oxford 2 mm cortical atlas37 and
from the 264-regionwhole-brain Power (2011) atlas38 by extractingmean
denoised BOLD time series per region per parcellation and calculating
between-region Fisher z-transformed correlations for all possible pairs.
We constructed weighted undirected graphs and computed modularity,
global efficiency, and characteristic path length per network. Functional
connectivity value distributions were visually inspected, and one outlier
run not mean-centered around zero was excluded from Power atlas
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analysis. Network measures were recalculated while excluding runs with
mean framewise displacement > 0.3 mm to check if any significant effects
were due to motion artifacts.

Statistics. We investigated scanner head motion per session and con-
dition with a 2 (pre/post) × 2 (meditation/rest) repeated measures
ANOVAonmean andmaximum framewise displacement per BOLD run
with post-hoc effects confirmed with Wilcoxon signed rank tests. MEQ
score differences were compared between sessions withWilcoxon signed
rank tests (n = 18, two subjects missing data).

After confirming normality and heteroskedasticity, paired t-tests
comparedRSNs, their component regions, a priori ROIs, andwhole-cortex/
brain networks pre- and post-intervention (separately for rest and medi-
tation scans), plus rest andmeditation (separately forpre-andpost-scans) to
investigate effects of time and of meditation, respectively. On rest vs.
meditation comparisons, the last 5 min of the 15-minmeditation scan were
used to compare equal-length scans. P-values were corrected for multiple
comparisons using Bonferroni–Holm family-wise error correction and
Benjamini–Hochberg false discovery rate when no results reached
pFWE < 0.05.

Anatomical data. Preprocessed skull-stripped segmented T1w data was
resampled to the MNI fsaverage template using mris_preproc (Free-
Surfer 7.3.2) and cortical surface was inflated to an average spherical
surface. Hemispheres were automatically parcellated into regions of
interest, and vertex-wise volumetric and cortical thickness calculations
were performed. Images were spatially smoothed with a 5 mm FWHM
Gaussian kernel. Pre-vs-post differences were assessed by repeated
measures ANOVA, and group differences between novice and advanced
participants at each timepoint were assessed by fitting a general linear
model using mri_glmfit-sim. Total intracranial volume and age were
included as covariates, and results were cluster corrected with a cluster-
wise p-threshold = 0.01.

Human plasma collection
Human plasma was collected and processed, as described in ref. 84, via
venous puncture by registered nurses, physicians, and phlebotomists, at
pre-intervention either off-site (“Day -1”, 2 days pre-retreat, 2–4 pm) or
on-site (“Day 0”, 1 day pre-retreat, 11 am–4 pm) and post-intervention
(“Day 8”, on-site, 9–5 pm). Participants were offered the same food
options for all breakfast, lunch, and snacks throughout the week,
although food choices were not monitored. All participants were
required to fast for at least 30 min prior to blood collection. Blood was
collected in EDTA-coated tubes (BD, Franklin Lakes, NJ) and kept at
4 °C (wet ice) for less than 30 min. Plasma was isolated by centrifuga-
tion at 3000 RPM for 15 min in an E8 Touch tabletop centrifuge (LW
Scientific, Lawrenceville, GA), aliquoted into 1.5 mL Eppendorf tubes,
and immediately frozen on dry ice. At the end of the retreat, samples
were shipped to UCSD and stored at −80 °C.

Plasma nanoparticle tracking analysis
Plasma Nanoparticle Tracking Analysis (NTA) measured circulating
plasma nanoparticle size and concentration with a NanoSight NS300
instrument (Malvern Instruments Ltd., UK). Samples were thawed on ice
and diluted in PBS (100×) to prevent aggregation. Measurements were
performed at room temperature under continuous video recording
(16 × 30-s. acquisitions/sample) and 532 nm laser illumination. Mean
hydrodynamic diameter, size distribution, and particle concentration were
obtained per sample with NTA 3.3 software.

ELISA
To investigate plasma concentrations of oxytocin, beta-endorphin, dynor-
phin, anandamide, cocaine, and amphetamine-regulated transcript
(CART), c-reactive protein (CRP), and neuropeptide Y (NPY), pre- and
post-intervention plasma samples were tested with commercially available

ELISA kits listed in Supplementary Table 12 following manufacturers’
instructions. Absorbance was measured with a Tecan Spark 10M micro-
plate reader, and concentrations were calculated by interpolating absor-
bance values against the standard curve, previously fit with a 3-parameter
logistic curve. Pre- and post-intervention concentrations were compared
with Wilcoxon signed rank tests.

Plasma proteomics
To investigate the intervention’s effects on the plasma proteome, 7596
proteins were quantified with the SomaScan Assay v4.1 (SomaLogic,
Boulder, CO, USA).

SomaScan assay. Samples were thawed on ice, diluted in SomaLogic
plasma diluent, and loaded onto SomaScan 96-well plates containing
capture SOMAmer reagents for 7596 unique human protein targets.
Plates were incubated for protein capture, unboundmaterial was washed
away, and biotinylated capture antibodies were added to hybridize with
SOMAmer-bound proteins. Streptavidin-conjugated Cy3 dye was added
to label the antibodies, plates were washed to remove unbound dye, and
protein-bound SOMAmer reagents were eluted and hybridized to cus-
tom DNA microarrays containing complementary sequences to each
SOMAmer. Cy3 fluorescence intensity in relative fluorescence units
(RFU) measured protein abundance. Hybridization control normal-
ization removed sample variance between microarrays and scanners;
median signal normalization removed within-plate inter-sample differ-
ences; and calibration normalization removed variance across assay runs.
Performance and quality were monitored with blank wells, technical
replicates, and spiked protein controls, and precision was assessed by
calculating coefficients of variation for all measurements. Background
subtraction RFU calculations were performedwith SomaLogic Discovery
Server software.

Data processing. RFU values were normalized, log10-transformed, and
auto-scaled (mean-centered and divided by each variable’s standard
deviation), and outliers above two SDs were flagged. Foldchange and
paired t-tests tested pre/post-intervention differences, and hierarchical
clustering and k-means clustering revealed correlated variation expres-
sion patterns. Functional enrichment analysis (Enrichr-KG) on differ-
entially expressed proteins (pre/post p < 0.01), with all SOMAmer targets
as background, assessed enriched biological processes, molecular path-
ways, and cellular components. Enriched pathways were considered
significant at pFDR < 0.05. Protein-protein interaction subnetworks of
significant proteins (p < 0.05 or |fold change| ≥ 0.5) were created in
Cytoscape with ≤30 interactor nodes and heat diffusion using the
STRING database85.

Plasma metabolomics
640 metabolites in whole plasma were detected via liquid chromatography-
mass spectrometry analysis using the widely-targeted Metware platform
(Metware Biotechnology, Woburn, MA, USA).

Metabolite detection. Plasma samples were extracted with a 1:4
ACN:methanol solution and centrifuged at 12,000 RPM (10 min, 4 °C)
and again at 12,000 RPM (3min, 4 °C) after 30 min. at −20 °C. Super-
natants were analyzed by ultra-HPLC (UPLC) (ExionLC 2.0, Sciex,
Framingham, MA, USA) on a UPLC column with a gradient elution
system for metabolite separation (UPLC conditions listed in Supple-
mentary Table 13). Eluted metabolites were detected based on mass and
fragmentation patterns by TandemMass Spectrometry (MS/MS) using a
quadrupole-time of flight mass spectrometer (QTRAP®6500+, Sciex)
with an electrospray ionization (ESI) Turbo Ion-Spray interface, oper-
ating in positive and negative ion mode. Untargeted qualitative meta-
bolite identification was performed by matching ion features to
references from Metware, HMDB86, METLIN87, and KEGG88 databases.
Identified metabolites were then quantified using triple quadrupole mass
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spectrometry with multiple reaction monitoring (mass spectrum con-
ditions in Supplementary Table 14). Mass spectrometry chromato-
graphic peaks were corrected with MultiQuant software (Sciex).
Reproducibility, cross-contamination, and inter-sample quality were
controlled with control samples, internal standard peaks from blank
samples, and internal standards, respectively.

Metabolite analysis. Quantified metabolite features were variance-filtered
via inter-quartile range (max 25% filtered out), normalized, and log10-
transformed. Outliers above 2 standard deviations were flagged. Dietary
factors and fasting may have introduced confounds in proteomic and
metabolomic measures, as no standardized diet was implemented and
fasting times beyond 30min pre-blood collection were not controlled.
Exogenous compounds annotated as dietary or drug-related by HMDBwere
monitored using theMetaboAnalyst pipeline and were flagged or removed if
observed among the top 25 features. PCA, hierarchical cluster analysis
(HCA), partial least squares discriminant analysis (PLS-DA), and FDR-
corrected pre/post paired t-tests (Scikit-learn89) identified differentially
expressed metabolites. Correlation heatmaps were generated using Pearson r
distance measures. Metabolic pathway analysis comparing pre- to post-
samples was performed with MetaboAnalyst v5.0 based on the KEGG
database. Pathway enrichment was first assessed using MetaboAnalyst, and
false discovery rate (FDR) correction was applied to control for multiple
comparisons. Significant pathways (pFDR < 0.05) were then selected for
follow-up analysis. For these pathways, we examined the distribution of
normalized feature values and report the corresponding p-values for group
comparisons after normalization.

Real time cellular metabolic analysis
To investigate the effects of human plasma on cellular metabolism, we
performed Seahorse XF mitochondrial stress, glycolytic rate, and ATP
production assays onBE(2)M17 cells (ATCC), a humanneuroblastoma cell
line, exposed to plasma followings90,91 methods.

Cell culture and plasma treatment. BE(2)M17 cells were cultured in
complete DMEM/F12 medium supplemented with 10% FBS and 1%
penicillin/streptomycin under standard conditions (37 °C, 5% CO2).
Cells were harvested, washed, and seeded onto microplates pre-coated
with poly-L-lysine at a 40,000 cells/well density and incubated overnight.
Cells were resuspended in XF assay medium and treated with 1% plasma
for 1 h at 37 °C, with 4 technical replicate wells per plasma sample, and
stained with DAPI for post-assay cell counting.

Seahorse XF assays. Seahorse XF96 Analyzer (Agilent, Santa Clara,
CA, USA) was calibrated according to manufacturer’s instructions, and
the following injection protocols were implemented: Mitochondrial
Stress Test (kit #103015-100): Oligomycin (1.5 µM), FCCP (2.0 µM), and
Rotenone/Antimycin A (0.5 µM) were sequentially injected to measure
basal respiration, proton leak, maximal respiration, and spare respiratory
capacity, with oxygen consumption rate (OCR) monitoring. Glycolytic
Rate Test (kit #103344-100): Rotenone/antimycin A (0.5 µM) and
2-deoxyglucose (50 mM) were injected to assess basal glycolytic rate,
glycolytic reserve, and non-glycolytic acidification, monitored by extra-
cellular acidification rate (ECAR). ATP Production Rate Test (kit
#103592-100): Injections of oligomycin (1.5 µM) and rotenone/anti-
mycin A (0.5 µM) enabled real-time calculation of ATP production rates
from OCR and ECAR.

Data analysis and statistics. We used Seahorse XF software (v.2.6) to
analyze raw OCR and ECAR data, normalizing results by cell counts,
and compared metabolic parameters between control, pre-, and post-
intervention groups with paired t-tests (p < 0.05 considered sig-
nificant). We assessed cell viability pre- and post-treatment and
included four non-cellular blank well controls per plate to ensure assay
quality.

Neurite differentiation
To investigate the effects of human plasma on neurite growth, PC12 neu-
roendocrine cells were differentiated to their neuronal phenotype, treated
with plasma, and live-imaged following published methods92.

Cell culture and differentiation. PC12 cells (ATCC, Manassas, VA,
USA) were cultured in RPMI 1640 medium supplemented with 10%
horse serum, 5% FBS, and 1% penicillin/streptomycin under standard
conditions (37 °C, 5% CO2). On Day 0, differentiation was induced by
plating cells onto poly-D-lysine-coated plates at a 1.0 × 104 cells/cm2

density and culturing themwithOpti-MEMmedium supplemented with
0.5% FBS, 1% penicillin/streptomycin, 50 ng/mL nerve growth factor
(NGF), and either 1% human plasma pooled from pre- and post-
intervention or no plasma (control cells) with 2 technical replicate wells
per condition. Medium was replaced every 48 h. Media was supple-
mented with 1% Culture One from Day 2 onwards to support neuronal
differentiation.

Live-cell imaging and neurite analysis. Differentiated cells were live-
imaged every 24 h for 10 days at 20× in a live cell imaging microscope
(Keyence BZ-X700) equipped with a phase contrast objective and an
incubation chamber at 37 °C, 5% CO2, and controlled humidity. Images
were acquired under consistent illumination across groups and time
points, and background subtraction and image thresholdingwere applied
to enhance neurite visualization. The single longest neurite per cell, for
cells for which it was longer than the cell body diameter, was manually
traced in FIJI software (v1.0). Neurite lengths were compared with two-
tailed independent samples t-tests between plasma-treated and control
groups at each time point. Treatment wells remained blinded until
completion to avoid bias.

Exosome-specific small RNA transcriptomics
Exosome isolation. Exosomes were isolated from plasma samples
(300–500 µl) by centrifugation at 300 × g for 10 min at 4 °C to remove cell
debris. Supernatants were transferred to microcentrifuge tubes, filled
with 1× PBS, balanced for mass, placed in a pre-cooled Beckman Coulter
Type 70.1 rotor, and centrifuged at 10,000 × g for 30 min at 4 °C with
maximum acceleration and gradual deceleration. Supernatants were
transferred to new tubes, exosome pellets were resuspended in 100 µl 1×
PBS, and another round of ultracentrifugation at 100,000 × g for 2 h. at
4 °C was performed. Final exosome pellets were resuspended in 150 µl 1×
PBS, analyzed by nanoparticle tracking using the same protocol as whole
plasma, and stored at −80 °C.

Exosome RNA sequencing. Total RNAs were purified from exosome
pellets using Direct Zol RNA mini kit (Zymo Research). RNAs were
eluted in 20 µl of RNAse-free water and concentrated to 5 µl using
SpeedVac Vacuum Concentrator (Thermo Fisher Scientific). 44 to
523 ng of exosome-specific extracellular small RNAs (exRNAs) were
obtained from 28 human plasma samples. exRNA quantity and integrity
were determined using the NanoDrop ND-1000 spectrophotometer
(Thermo Fisher Scientific) and the Bioanalyzer 2100 (Agilent, Santa
Clara, CA, USA), respectively. Small exRNA libraries were generated
using NEXTFlex Small RNA-seq Kit v4 with UDIs (Revvity Inc, Wal-
tham, MA, USA) according to modified manufacturer’s protocol to
account for low exRNA concentrations in exosome samples. The strategy
for small RNA libraries aimed at a range of 16–120 nucleotide (nt)-long
transcripts for accurate identification and quantification of exosome-
specific extracellular microRNAs, ncRNAs, and protein-coding RNAs.
NEXTFLEX® 3′ Adenylated Adapter v4 was ligated at 25 °C for 1 h.
Following 3′AdenylatedAdapter inactivation, NEXTFLEX 5′Adapter v4
was ligated at 20 °C for 1 h. Reverse Transcription-First Strand Synthesis
from 5′ and 3′ NEXTFLEX® Adapter Ligated RNA templates was con-
ducted at 50 °C for 1 h, followed by inactivation at 90 °C for 5 min. First
Strand Synthesis products were purified using NEXTFLEX Cleanup
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Beads by twowashes in 80% ethanol. RNA templates were combinedwith
NEXTFLEXUDI Barcoded PrimerMixes v4 diluted 1:4 and amplified by
PCR for 24 cycles. PCR products size selection and cleanup were done
using NEXTFLEX Cleanup Beads. Small exRNA libraries were eluted
from beads in 15 µl and concentrations were determined using Qubit
dsDNA HS Assay (Life Technologies). DNA fragment profile in small
exRNA libraries was analyzed on the Bioanalyzer 2100. RNA-seq was
conducted on the NovaSeq × Plus Short-Read Sequencer (Illumina, San
Diego, CA) at the Genomics Research and Technology Hub, University
of California, Irvine.

RNA-seq data processing. Sequencing read data were converted
to FASTQ format for bioinformatic processing using
Lonestar6 supercomputer at the Texas Advanced Computing Center and
bioinformatically processed according to guidelines developed for
NEXTFLEX Small RNA-Seq (Revvity Inc.,Waltham,MA,USA). In brief,
flanking forward (TGG AAT TCT CGG GTG CCA AGG) and reverse
(AGA TCG GAA GAG CGT CGT GTA GGG AAA GA) adapter
sequenceswere trimmedprior to alignmentwithCutadapt93. Paired reads
above 16 nucleotides with quality scores above 20 were mapped to the
human genome primary assembly (Release 47, GRCh38.p14). Reads-to-
genome alignmentwas conducted using STAR aligner94.Mapping quality
was assessed using MultiQC tool95.

Detection of differential exosomal RNAs. The differential analysis of
sequence read count data was done using a generalization of a paired t-
test using EdgeR software96–98 in which exosome RNA pools in pre- and
post-intervention samples per participant were compared separately and
the baseline differences between participants were subtracted. Tran-
scripts with fewer than 10 counts were removed from analysis. Trimmed
Mean ofM-values (TMM) normalization99,100 was applied to account for
compositional difference between samples. exRNAwere annotated using
org.Hs.eg.db101 and miRbase102 databases. Sequences corresponding to
non-coding RNAs (ncRNAs) and exhibiting the highest variance across
all samples were analyzed by PCA of TMM-normalized counts using
PCAtools Bioconductor package. Functional analysis of differential
exRNA was done using ClusterProfiler103 and the Reactome Pathways
Knowledgebase46. A paired design in the negative binomial (NB) gen-
eralized linearmodel (GLM) detected the effect of the intervention on the
composition of exRNAs from paired post-intervention (n = 14) vs pre-
intervention (n = 14) samples, while adjusting for differences between
participants. Participants’ experience level (9 advanced, 5 novices),
gender (8 females, 6 males), and age were included as additional
covariates.

Machine learning and MEQ-features correlation analyses
We applied machine learning to identify the most biologically relevant
features across timepoint (pre/post) and experience level (novice/advanced)
datasets. Each dataset was preprocessed (log-transformed and auto-cen-
tered) and missing data was imputed to ensure feature scaling, normal-
ization consistency, and data integrity and comparability across
modalities104. Post-preprocessing, ELISA, metabolomics, transcriptomics,
and proteomics datasets were concatenated into a single featurematrix used
as input for an eXtremeGradientBoosting (XGBoost)105 classifier chosen for
its ability to handle high-dimensional data. To obtain a unified impact
metric per feature, the dataset was passed through a Shapley Additive
exPlanations (SHAP)106 explainer model. Spearman correlations were then
calculated between MEQ scores and the top 14 features per model and
corrected for multiple comparisons to explore whether the top molecular
changes were linked to subjective outcomes.

Statistics and reproducibility
Given the n = 20 sample size (n = 19 for fMRI), nonparametric Wilcoxon
signed rank statistics were performed throughout when comparing paired
samples, except when n ≥ 30 (e.g., protein targets) or when normality and

homoskedasticity were ascertained, in which case two-tailed paired t-tests
were employed. Given that proteomic and metabolomic analyses were
hypothesis-free and data driven, FalseDiscovery Rate (FDR) correctionwas
applied using the Benjamini–Hochberg procedure, and reported p-values
are labelled as FDR-adjusted, with nominal p-values included for trans-
parency. SeahorseXFplateswerepreparedwith 4 technical replicates (wells)
per participant and timepoint. PC12 assay plateswere preparedwith pooled
plasma (n = 20) with 2 technical replicates (wells) per treatment (pre-
plasma/post-plasma/no treatment).

Ethics and inclusion statement
Data collection and analysis was performed locally in San Diego, CA, USA
and included local researchers. Roles and responsibilities were agreed
amongst collaborators ahead of the research, and clinical practice and
biospecimen handling trainings were provided to all researchers. The study
was approved by a local research ethics committee and did not result in
personal risk to study participants. Researchers who handled biospecimens
during collection and analysis wore adequate personal protective equip-
ment. fMRI researchers and participantswere thoroughly screened forMRI
safety before being allowed inside the fMRI magnet room.

Data availability
Values for all data points in plots and reported means are available (Sup-
plementary Data 1). RNA-seq data is available from GEO repository
(accession #GSE291700). Proteomics data is available from PRIDE repo-
sitory (dataset PAD000010). Any other data is available from the corre-
sponding author on reasonable request.

Code availability
Analytic code can beobtained from the corresponding author on reasonable
request.
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